fastsg: A Fast Routines Library for Sparse Grids

Alin Murarasu (murarasu@in.tum.de), Gerrit Buse, Dirk Pflüger, Josef Weidendorfer, Arndt Bode

Technische Universität München
Overview

- Compression / Decompression of Simulation Data
- Sparse Grids
- fastsg's Interface
- Data Structure
- Sparse Grid Algorithms
- Performance
High-dimensional Data Exploration

- Simulations on supercomputers
 => large-scale data
 => high-dimensional data
 - e.g. # of dims. ~= 10

- We want to visualize / interact with the data
- But data is too big for visualization nodes
 => we need a compressed / hierarchical data representation
Sparse grids (d-dimensional) != sparse matrices (2d)

- The sparse grid technique
 - defines hierarchical basis fcts.
 - excludes the basis fcts. with reduced contribution

- Sparse grids require fewer grid points / values
 - $O(N^*(\log(N))^{d-1})$ vs. $O(N^d)$ for full grids
 - error only slightly deteriorated for smooth fcts.
 - => compression (lossy)
1d Hierarchical Basis Functions

- Hierarchy of basis functions
- Incremental levels of detail
- Level ++ => support --
- Each basis fct. is identified by \((l, i)\)
 - \(l = \text{level}\)
 - \(i = \text{index}\)
- Sparse grid approximation = basis fcts. + coefficients
- 2d basis fct. = product of two 1d basis fcts.
- Each grid point
 - contains a coefficient that scales a basis fct.
 - is identified by \((l, i)\) (\(l\) and \(i\) are now vectors)
- Approximation = sum of scaled basis fcts.
Building Sparse Grids

- Assumption: support \sim contribution
- Central idea: exclude basis fcts. with the smallest support (they count less)
- How? By restricting the L1-norm of $l = (l_1, l_2)$
 - e.g. $l_1 + l_2 \leq n$

Constraint: $l_1 + l_2 \leq 4$
Dimensionally Truncated Sparse Grids

- Regular sparse grids (left):
 - same # of points per dimension
 - one constraint: \(l_1 + \ldots + l_d \leq n \)

- Dimensionally truncated sparse grids (right):
 - different # of points for different dimensions
 - \(d + 1 \) constraints: \(l_1 + \ldots + l_d \leq n, l_1 \leq c_1, \ldots, l_d \leq c_d \)

- Why? different dimensions might need different levels of detail
fastsg's Interface

- **Dual-layer:**
 - **data structure** with minimal memory footprint (no trees, hash-tables, …)
 - **high-level operations** optimized for caches and vector units

- **User-friendly:**
 1. **Initialize:** inserts the values of a fct. \(f \) in the sparse grid
 2. **Access data:** \(\text{agp2idx} \) returns an index used to get the value at \((l, i)\)
 3. **Hierarchize:** computes the hierarchical coefficients
 4. **Evaluate:** interpolates the sparse grid

<table>
<thead>
<tr>
<th>Layer</th>
<th>Routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data structure</td>
<td>\text{init}(d, n, c[d], f)</td>
</tr>
<tr>
<td></td>
<td>\text{agp2idx}(l[d], i[d])</td>
</tr>
<tr>
<td></td>
<td>\text{idx2agp}(idx)</td>
</tr>
<tr>
<td></td>
<td>\text{next}(l[d])</td>
</tr>
<tr>
<td></td>
<td>\text{size}()</td>
</tr>
<tr>
<td>Sparse grid operations</td>
<td>\text{hierarchize}()</td>
</tr>
<tr>
<td></td>
<td>\text{evaluate}(x[m][d])</td>
</tr>
<tr>
<td></td>
<td>\text{error}()</td>
</tr>
</tbody>
</table>
Storage Scheme

Central idea:
- decompose the sparse grid in dense blocks
- **Only the values are stored in a special order**
 => minimal memory consumption

To return the value at \((l, i)\), `agp2idx` adds 3 indices:
- \(idx_1\): beginning of the group that contains \((l, i)\)
- \(idx_2\): beginning of the block that contains \((l, i)\)
- \(idx_3\): position of the value in the block

Before indexing, there are 2 questions:
- \(P_1\): what is the size of a group?
- \(P_2\): what is the position of a block in its group?

Trade-off: int ops ++, mem. refs. --
Dynamic Programming Algorithms

- fastsg includes dynamic programming algorithms for \(P_1 \) and \(P_2 \)

- \(P_1 \): what is the size of a group?
 - let \(A(i, j) \) be the # of vectors with length \(i \) and L1-norm \(j \)
 - if \(j < c \), then \(A(i, j) = A(i, j - 1) + A(i - 1, j) \)
 - else \(A(i, j) = A(i, j - 1) + A(i - 1, j - c) \)
 - our algorithm fills the matrix \(A(d, n) \) in \(O(d \times n) \) time
 - \(A \) is computed once at initialization

- \(P_2 \): what is the position of a block in its group?
 - we define an order / sequence for vectors \(l \) with the same L1-norm
 - the sequence is implicit, i.e. not stored in memory
 - we determine the position of any \(l \) in the sequence in \(O(d + n) \) time
 - this operation is used intensively
Sparse Grid Algorithms

- Hierarchization / compression:
 - indirect accesses to memory => memory bound
 - \textit{idx2agp / agp2idx} are expensive => integer bound

- Evaluation / interpolation / decompression:
 - we evaluate the sparse grid at \(m \) points, \(m \geq 10,000 \) => CPU bound

Optimization philosophy = exploit dense blocks
- broadcast a micro-operation to an entire block (SIMD-like)
- allows for better use of caches / vector units
Sequential Performance

- **Hierarchization (< 5x):**
 - opt1, opt2, opt3: loop invariant code motion
 - opt4: vectorization
- **Evaluation (< 7x):**
 - opt1: loop interchange
 - opt2: vectorization
- **Following the same path, our most recent results are:**
 - hierarchization: 1.3 Gflops (< 26x)
 - evaluation: 8.4 Gflops (< 12x)
Evaluation benefits from Hyperthreading
- there is optimization potential for improving serial performance
- important for systems without multi-threading, e.g. AMD

This behavior is visible with gcc, not icc

We managed to help the gcc compiler using manual unroll-and-jam
=> more ILP in the innermost loop
=> same performance as icc
Conclusion

- fastsg provides fast routines for the sparse grid technique
- Its focus is on approximation / interpolation
- It supports regular and dimensionally truncated sparse grids
- Its features include:
 - minimal memory consumption
 - optimized high-level operations for compression functionality
 - simple to use interface
Thank you for listening!